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Generating Fast, Error Recovering Parsers

.Thesis directed by Professor William M. Waite
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Although parser generators have provided significant power for language

recognition tasks, many of them are deficient in error recovery. Of the ones that do

provide error recovery, ma,-v of these produce unacceptably slow parsers. I have

designed' p implemented a parser generator that produces fast, error recovering

parsers. The high speed of the parser is a result of making the code directly execut-

able, and paying careful attention to implementation details. The error recovery

technique guarantees that a syntactically correct parse tree will be delivered after

parsing has completed no matter what the input. This is important so that remain-

ing compilation phases will not have to deal with infinitely many special cases of

incorrect parse trees. Measurements show that the generated parser runs faster than

any other parser examined, including hand-written recursive descent parsers. The
cost of this fast parser is a slight increase in space requirements. Although this par-

ticular generator requires LL grammars, the ideas can be applied to generators tak-

ing LALR grammars. Furthermore, there is evidence that most LALR grammars

for programming languages can be automatically converted to equival-ent LL gram-
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CHAPTER 1

INTRODUCTION

k-
A parser is the part of a compiler that recognizes the structure of the

input language. It should be time and space efficient) It should be user friendly

that is, present clear and concise diagnostics for syntax errors. A parser should a,

also be maintainable; that is, a small change or fix should only require a small

amount of effort. Without the aid of tools, it is difficult to build a correct parser

that includes all of these attributes. This thesis describes the design and

implementation of parser generation software.

Section 1.1 will establish the context for discussing parsing and define

the terms used. Section 1.2 describes and comments on the strengths and

weaknesses of a number of existing tools for generating parsers that do not meet

all of the design criteria. Section 1.3 sketches the design of a parser that meets

the criteria. Section 1.4 presents the overall organization of the thesis and the

thesis statement. S'

1.1. Background t

Before focusing on the particular problems of parsing, it is important to
S.,

understand the context in which it occurs. As shown in Figure 1, a compiler is a

program that reads a program in a source language and translates it into an

equivalent program in a target language. An important part of this process is the

SI.
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reporting of errors in the source program to the user. Figure 2 shows the a
a

decomposition of a compiler and the flow of data through its constituents. The

first level of decomposition divides compilation into analysis and synthesis

phases. To determine the meaning of the source program, analysis breaks up the

source program into its constituent parts and creates an intermediate

representation of the source program called structure tree. The name derives from

source compil r ge
program- coplrprogram

e or
mes ages

Figure 1. The Compiler

'a

Analysis[ Synthesi t .

Analysis[ .alsisJ ee :l.... tree  Ase

Fgr connmtion tar et
/ / enceprogram

Analysis 
.sequen 

e] Parsing

program .

Figure 2. The Decomposition of a Compiler (arrows show data flow) .
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the fact that it is usually conceptualized as a tree whose structure represents the

control and data flow of the program. The synthesis phase constructs the desiredp

equivalent target program from the structure tree.

Analysis is the more formalized of the two major compiler tasks. It is

generally broken down into two parts: structural analysis and semantic analysis.

Structural analysis determines the static structure of the source program, and

semantic analysis checks that substrings of the input are meaningful in their

particular context. Structural analysis is further decomposed into two parts.

Lexical analysis deals with the basic symbols of the source program and is

described in terms of a finite-state automaton. Lexical analysis reads the terminal

symbols of the source program and produces a sequence of tokens. Parsing deals

with the static structure of the program and is described in terms of a pushdown

automaton. It determines whether a sequence of tokens forms a structurally

correct program. The program can be represented as an explicit parse tree or in a

linearized form called the connection sequence which is input to semantic

analysis.

There is little in the way of formal models for the entire synthesis

process, although algorithms for various subtasks are known. Synthesis consists

of two distinct subtasks: code generation and assembly. Code generation

transforms the structure tree into an equivalent target tree. Assembly resolves all

target addressing and converts the target machine instructions into an appropriate

output format, namely the target program.

Central to the issues of parsing is a grammar, which specifies the

structure of a language. For example, an if-else statement in C has the form:

if ( expression ) statement else statement

The statement is the concatenation of the keyword if, a left parenthesis, an

tl
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expression, a right parenthesis, a statement, the keyword else, and another

statement. Using the variable expr to denote an expression, and the variable stmit

to denote a statement, the structuring rule can be expressed as

stmt -4 if ( expr ) stmt else stmt

in which the arrow can be read as "can have the form". Such a rule is called a

production. In a production, lexical elements such as identifiers, the keyword if,

and "(" are the terminal symbols. Variables such as expr and strt represent

sequences of tokens and are called non-terminals.

Grammars can be placed in several classes, of which only context-free

is of interest here. A context-free grammar has four components:

(1) A set of terminal symbols.
(2) A set of non-terminals.

(3) A set of productions where each production consists of a non-terminal
called the left-side of the production, an arrow, and a sequence of to-
kens and/or non-terminals called the right-side of the production.

(4) A designation of one of the non-terminals as the start symbol.

We assume that the production listed first contains the start symbol and that

digits, special symbols such as "(", and boldface strings are terminals. For

notational convenience productions with the same non-terminal on the left can

have their right-sides grouped together with the alternative right-sides separated

by the symbol "I" which can be read as "or."

Parsing methods can be classified according to the way the parse tree is

constructed. Top-down parsers build parse trees from the root (start symbol) to

the leaves (terminal symbols) while bottom-up parsers start from the leaves and 4..

work to the root. In both cases, the input to the parser is scanned from left to -A

right, one token at a time. The two types of parsers are capable of recognizing

different classes of languages defined by properties of the grammar. The

---
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language recognized by a top-down parser can be specified by an LL grammar.

An LALR grammar can be used to specify a bottom-up parser.

Discussion can be limited to the LL(1) and the LALR(1) grammars U-

because parsers for their languages:

(1) Are deterministic and hence parse in linear time,
(2) Never accept a symbol that cannot continue a correct parse,
(3) Cover almost all programming language constructs,
(4) Can be analyzed by well-known tools, and
(5) Have well-known algorithms for error recovery.

Parsers implemented by hand, which work with LL(1) grammars, are usually

directly executable code. Generated parsers are usually table driven and are

specified with LL(1) grammars or the larger set, LALR(1) grammars.

1.2. Tools

A parser generator is the tool that takes a grammar as an input, and

proluces a parser (see Figure 3).

i

gramar

parser
generator

token i connection.,
sequence "[parser Isequence

error

m es ages

Figure 3. Parser generator
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Using a parser generator is preferred over "hand coding" because the

resulting parser is more reliable, maintainable and often faster. Further, it can be p

produced with less effort. By reliable, I mean that the parser produces useful

results under the weakest possible assumptions about the quality of the input. A

reliable parser will accept all legal programs and reject any illegal ones. Building

such a parser "by hand" is tedious and error prone. .

Even without error recovery, building and maintaining a parser by hand .a,

is an error prone process. A hand written parser is usually written from a

grammar specification. The most common technique, recursive descent, requires

an LL grammar. Just determining that the grammar is LL is tedious. If the parser

does not work properly, it will need to be changed, but the grammar specification

may or may not be correct. The real definition of the language that the parser

accepts becomes embodied in the code of the parser routine. The correspondence

between the grammar and the parser is not guaranteed. On the other hand, a

generated parser is constructed directly from the grammar specification.

Assuming the tool works properly, the parser must perform according to the

grammar. Changes in parsing behavior are always a result of changing the

grammar. The tool ensures that the generated parser will always correspond

exactly to the grammar.
p

Almost by definition, error handling involves a mass of special cases

and exceptions to rules. Therefore, it is very difficult to attempt to handle all

errors with ad-hoc techniques. It is difficult to prove, or even convince someone,

that a hand written parser is correct and can deal robustly with illegal input. If the

source program contains structural errors, the parser must indicate the problem. It

is usually unacceptable for the parser to "give up" at the first error and abort the

compilation process. We desire parsers that will "recover" from an error by

a'
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altering the remaining input and continuing. This has to be carried out in a very

careful and systematic way to insure that the entire compiler remains in a

consistent state. Fortunately, there is a theoretic foundation that provides an error

recovery technique that is guaranteed to handle all syntactic errors. Automating

this method ensures that the error recovery will always work properly.

Parser generators gained popularity in the early 1970's [Ahol986].

YACC [Johnson1979] for example has been used to help implement hundreds of

compilers. Initially, just being able to construct a parser from a grammar was

sufficient motivation to use a parser generator. As languages become more

powerful and complex, we need to place more emphasis on parsing speed and

automatic error recovery. Each of the parser of parser generators in the following

list have different strengths and weaknesses, but none of them have have all of the

desired attributes.

YACC is a parser generator well known in the UNIX community.

Many UNIX tools such as pic, make, config, awk and cc use YACC to construct

their parsers. YACC produces a medium speed, table driven parser (C code). For

most applications the parsing speed is not a major bottleneck in the overall

program. The space requirements of a YACC parser are very reasonable. YACC

produces a parser from an LALR(1) grammar. This is an advantage over parser

generators that only work from LL(1) grammars. It is an inconvenience that .

YACC does not accept extended BNF notation (EBNF) [Waite1983]. YACC has

directives that can be used to specify precedence and associativity. The major

drawback of this tool is that there is no automatic error recovery. Unless the

compilei writer is willing to do extra work, the first syntax error will terminate

parsing.

a -M.A'" -.. . . ,A- -* ... " -- - -- - .
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The PGS [Denckerl985] parser generator also uses an LALR(l)

grammar to generate a table driven parser. Unfortunately, the parser runs

unacceptably slowly. PGS spends a lot of effort compacting the parse tables.

This combined with inflexibility of PASCAL (the implementation language of the

generated parser) results in extremely costly parser table access. The major

advantage of a PGS generated parser is that it is guaranteed to recover from

syntactic errors. PGS accepts an extended BNF notation, but has no directives for

precedence or associativity.

The SYNPUT generator [Dunn198l] produces parsing tables from an

LL(1) grammar. SYNPUT accepts extended BNF and has the same automatic

error recovery as PGS. The generated parser runs at about the same speed as a

YACC parser.

Performance is always an issue for production compilers.

Measurements show that parsing time often represents a significant percentage of

compilation time and furthermore that hand-written parsers run faster than parsers

generated from tools [Grayl985b]. This is unnecessary and these tools are j
deficient. Production compilers often use directly-executable recursive descent

parsers. Many of the tool-generated parsers are table driven thus leading to

reduced speed.

If hand written parsers were always much faster than generated parsers,

there would be trouble justifying using the latter. Although none of the above

parser generators offers both speed and automatic error recovery (AER), as
b

compiler writers, we desire such a tool. The produced parser should be

reasonably space efficient. It is desirable for the tool to accept the LALR(1) class

of grammars. I

|i
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1.3. A Directly Executable Parser with Error Recovery

Waite and Hall [Waitel985b] have devised a method of generating a

top-down parser directly from an LL(1) grammar. Their directly executable

parser runs even faster than a recursive descent parser because they have

eliminated unnecessary procedure call overhead; nevertheless, we still need

automatic error recovery.

This thesis describes the design and implementation of a tool that

generates a Directly Executable parser with Error Recovery (DEER). The error

recovery has a negligible effect on the parsing speed of syntactically correct

programs. When a syntactic error is present in the input program, the parser

invokes an error recovery automaton which deletes and/or gener tes tokens to get

the parse back on track. Normal parsing then continues.

1.4. Thesis Statement and Organization

This thesis is concerned with generating fast, error recovering parsers.

An earlier project [Grayl985b] investigated why tool generated compilers

[Kastensl982] ran so much slower than hand written ones and found that parsing

time accounted for the major difference. Not all generated parsers are slow

[Gray1985a]. With the exception of this work, other generated parsers do not

provide both high speed and error recovery. I present the design and

implementation of a tool that produces fast, error correcting parsers. The

generated parser is efficient, user-friendly, and maintainable.

Chapter 2 explains the generation of directly executable parsers.

Chapter 3 shows how automatic error recovery has been incorporated into the fast

parser. Chapter 4 presents time and space measurements of the DEER, YACC

and PGS generated parsers. The last chapter discusses areas of further study.



CHAPTER 2

DIRECTLY EXECUTABLE PARSER

This chapter explains the concepts of the Waite and Hall parser and the

refinements I have made to it. The conventional recursive descent parser is

explained first. Then I draw a parallel between the recursive descent parser and

SYNPUT tables. These tables can be interpreted or they can be transformed into

directly executable code.

2.1. Motivation

There are numerous cases where the efficiency of a tool is crucial to its

acceptance. The PGS tool has the error recovery feature that we desire, but is

often not used because of the slow running speed of the generated parser. As both

Waite [1985a] and Pennello [1986] hypothesized, high parsing speed can be

achieved when the parser is directly executable. Hall and Waite [Waitel985b]

performed an experiment comparing a YACC generated parser for Pascal to their

directly executable parser for the same language. As Figure 4 shows, at a cost of

twice the total space the speedup is almost a factor of ten. Although the

respective grammars are somewhat different, it is clear that direct execution

offers the opportunity to achieve large speed improvements.

I



parser time text data bss total space
YACC 631 664 3916 608 5188
Waite/Hall 65 9660 436 0 10096

Figure 4. Waite-Hall parser vs YACC

2.2. Recursive Descent Parsing

A recursive descent parser has a procedure for each left-hand non-

terminal of the grammar. Each procedure recognizes the respective right-hand

side. The technique requires an LL(1) grammar. Briefly, for LL(1) grammars, it

is always possible to determine which production will be required based only on

the current terminal symbol. A complete discussion of LL(1) grammars and

recursive descent parsing can be found in the literature [Waite1983, Aho1986].

The LL(1) condition can be verified by hand, or by using a tool such as SYNPUT.

Recursive descent parsing has been used for years in production compilers

[McClurel972J. It is the best general method of writing parsers by hand. Even

when coded in a high level language, the recursive descent parser is very

efficient.

Figure 5 gives a simple LL(l) grammar that will be used in examples

throughout this chapter.

type -4 simple
I "id
I array [simple ] of type

simple -4 int
I char
I num .. num

Figure 5. Sample grammar

Figure 6 gives some example sentences of the language specified by the sample

grammar.

I
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num.. num
int
array [int ] of id
char

Figure 6. Sample input sentences

Aho, Sethi and Ullman [Aho1986] give a recursive descent parser for this

grammar which is condensed in Figure 7. Match is the procedure that consumes

the expected token and gets the next token from the lexical analyzer. This is

known as the lookahead (1a) symbol (or token) because it has not yet been

accepted by the parser, but it is available for inspection. Parsing begins by setting

la to the first token of an input, and then calling the procedure corresponding to

the start of the grammar (e.g. "type" in this grammar). Figure 8 traces the

recursive descent execution on the input sentence: array [int of id.

procedure match(t:token)
if la = t then la := nexterm(; else error();

procedure type
if la is in (int char num) then simple()
elseif la = then match(^); match(id);
elseif la = array then match(array); match([);

simple( ); match(]); match(of); type(;
else error( );

procedure simple
if la = int then match(int);
elseif la = char then match(char);
elseif la = num then match(num); match(..); match(num);
else error( );

Figure 7. Recursive descent parser

v" , " , v ,," ,€- " ,7 " q ,, e ,,r , ' • " - - " • -I
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Procedure Code Lookahead token

array
type if la is in {int char num)

elseif la =
elseif la = array then match(array);

match [
match int
simple if la = int then match(int)
match
match of
match *

type if la is in (int char num}
elseif la = then match(^);

match id
match EOF

Figure 8. Recursive descent trace

2.3. SYNPUT

SYNPUT is a tool that produces a top-down table driven (ie. not

directly executable) parser from an LL(1) grammar. The parsing tables are

divided into six parts.

(1) A summary of the number of terminal symbols, director sets, actions,
and parsing rules.

(2) A bit matrix representing the director sets (explained below).
(3) The terminal symbols of the grammar with their assigned token codes.
(4) The terminal symbols that have intrinsic attributes - such as

identifiers and numbers.
(5) The non-terminals.
(6) The parsing rules.

Given these tables, the interpreter part of the parser will recognize sentences of

the language. When the interpreter needs the next terminal symbol, it calls the

lexical analyzer which returns a token code. SYNPUT encodes the terminal

symbols of the sample grammar as given in Figure 9.
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1

2 id
3 array
4 [

5]
6 of
7 int
8 char
9 num

10

Figure 9. Token codes for the terminal symbols

Briefly, the director sets are sets of terminal symbols that enable the

parser to determine quickly what action to take next. Figure 10 gives the director

sets for the grammar in both symbolic and integer form.

D1 = {int char num) (789) A

D2 = ^array int char num)= (13789)
Figure 10. Director sets

Notice in Figure 7 that the first line of procedure type is checking whether the

lookahead is a member of the director set Dl. Furthermore, if the lookahead is

not a member of director set D2, then calling type will cause a call to the

procedure error. This is how these sets are used to direct parsing action. In

procedure simple, the first test can be considered a test in a director set with a

single element (ie. a test for symbol int). It is more efficient to avoid explicit

singleton director sets.

The SYNPUT produced parsing rules are given in Figure II (symbolic

codes have replaced integer codes to make the table easier to follow).

A portion of the interpreter for SYNPUT tables is given in Figure 12.

Parsing operation begins with the lookahead symbol, la, initialized to the first

terminal of the program, and with the stack, Stk, containing a single element zero.
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Rule Op S L/A

LO JE {array int char num} LI
LI NC L14
L2 NR
L3 JO int L6
LA RD int
L5 JP L13
L6 JO char L9
L7 RD char
L8 JP L13
L9 JO num L4
L1O RD num
Lll RE
L12 RE num
L13 NR
L14 JO {int char num} L17
L15 NC L3
L16 JP L28
L17 JO L21
L18 RD
L19 RE id
L20 JP L28
L21 JO array L15
L22 RD array
L23 RE [
L24 NE {int char num} L3
L25 RE ]
L26 RE of
L27 NE { array int char num} L14
L28 NR

Figure 11. SYNPUT produced parsing tables

The first table entry is a jump (JE) to the code that corresponds to the start symbol

of the grammar. Parsing is complete when the entire input is consumed and the

stack is empty. Every state transition requires a cycle through the loop. The

current parse state is maintained on the top of the stack. The PUSH macro pushes

a new state onto the top of the stack. The JMP macro changes the top of the stack

to the target, thus affecting a jump. In the interpreter, the three arrays Op, Dset

and Datum correspond to the columns of the table for opcodes, symbols or

S|
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director sets and labels (rules) respectively. The opcode definitions are given in

Figure 13. S refers to a set of terminal symbols (possibly a singleton set). Later, p

it will be more convenient to express singleton sets by suffixing the opcode with

the letter "S". For example, "JO" is equivalent to "JOS". L refers to a rule

(also a state of the parser), and A always refers to an action to be performed upon

recognition of a grammar production. (There are no actions in the sample

grammar.) Each opcode requires specific operand types, so operand interpretation

is unambiguous.

Consider the trace given in Figure 14 for the parsing the following sentence:

Interpretation begins at rule 0 of Figure 11. The lookahead symbol has been

initialized to the first token, that is, la = 3. la is a member of D2 so goto Li.

do {
rule = Stk[Sp]++;
switch (Op[ruleI) { /* case labels */

RDS RD la=lexAttr( ); break;

RE IFNOT(Dset[rule],la) (void)parErr(ia,rule);
else la=lexAttr( ); break;

AC action(Datum[rule]); break;
RA IFNOT(Dset[rule],la) (void)parErr(la,rule);

else { action(Datum[rulel);la=lexAttro; ] break;

NC PUSH break;

JP JMP; break; /* set stack to Datum[rule] */

JI IFIN(Dset[rule],la) JMP; break;

while(Sp>O);

Figure 12. Table interpreter
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AC A Perform semantic action A.
AR SA Perform action A and read a new symbol.
EO S Error if la not in S.
JE S,L If la in S jump to L, else error.
JI S,L If la in S jump to L.
JO S,L If la not in S jump toL
JP L Unconditionally jump to L.
NC L Call nonterminal L.
NE S,L If la in S call nonterminal L, else error.
NR Return
RD S Read new symbol.
RE S If la in S read a new one, else error.
RA S,A If la in S perform A and read, else error.

Figure 13. Definition of SYNPUT codes

a,

Ir
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rule Op[rule] Dset[rule] Datum[rule] Stack lookahead
L S L/A

array
L0 JE (132) LI 0 1
LI NC L14 0 2

push(14)
L14 JO (D1) L17 0215
L17 JOS L21 02 18
L21 JOS array L15 0222
L22 RDS array 0223

L23 RES [ 0224
int

L24 NE (DI) L3 0225
push

L3 JOS int L6 02254

L4 RDS int 02255

L5 JP L13 02256
L13 NR 022514
L25 RES ] 0226

of
L26 RES of 0227

L27 NE {D2) L14 0228
push(14)

L14 JO (D1) L17 0228 15
L17 JOS L21 0228 18
L18 RDS 022819

id
L19 RES id 022820

EOF
L20 JP L28 022821
L28 NR 022829
L28 NR 0229
L2 NR 0 3

Figure 14. Interpretive parser trace of array int ] of ^id

N.
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Now make a subroutine call (L14) to process the non-terminal simple. la is not in

DI so goto L17. la is not equal to 1 so goto L21. la is equal to 3 so continue at

L22. Read the next symbol, 4. la is 4 so read next symbol: la = 7. The process is

continued until the stack is empty.

2.4. Direct Execution

SYNPUT has performed the work of producing a set of parsing tables

that tell how to recognize sentences of a language. These tables can be translated

into directly executable code. Figure 15 shows the steps to generate a DEER

parser from an LL(1) grammar. A set of programs transform the SYNPUT tables

into files of C code. Direc.h and Direc.c encode the director sets. There are three

files for the arrays Op, Dset and Datum. Finally the directly executable code is in

the file tbl.i. There are also a set of files that remain constant for all grammars.

These, along with the six generated C files, can be compiled together yielding a

complete parser.

The structure of the directly executable parser shown in Figure 16 is

similar to a an assembly language version of a recursive descent parser. A call is

conftant
framework

LL(1) SYPT tables transformation fesC
grammar prc~g.-ams compiler

DEER
parser

Figure 15. Steps to build a directly executable parser 7"yr 4%
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implemented as the sequence PU( ); goto L; and a return is goto pppop. Notice

that the case labels are compact. This yields an improvement in execution speed

of up to 25%.

goto LO;
pppop: switch (--*DEPSp)
case 0: break;

/* Code included from tbl.i */
LO: IFNOT(D2,la) la=parErr(la,LO); S

goto LI;
LI: PU(1); goto L14;

case 1:
L2: goto pppop;
L3: if (la != int) goto L6;
L4: la = nexterm(;
L5: goto L13;

case 3:
L25: if (la !=]) la=parErr(la,L25);

la = nexterm( ); 0
L26: if (la != of) la=parErr(la,L26);

la = nexterm( );
L27: IFNOT(D2,la) la=parErr(la,L27);

PU(4); goto L14;
case 4:

L28: goto pppop;

Figure 16. Directly Executable Parser

At first glance, the directly executable parser appears to have a structure similar to

the interpretive parser. However, the interpretive parser requires a loop iteration

for every state change: the directly executable parser makes transitions with goto

statements. A switch statement is required for only a fraction of the cases. There

are roughly four times as many instructions required for a state transition for the

interpretive case. The trace in Figure 17 illustrates the parsing for the sentence

array [ int ] of ^id.

p
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I use a two step translation process to convert SYNPUT tables into C

code. The SYNPUT tables distinguish between multiple element sets and

singleton sets by using a star (*). It is more efficient to test for a particular

symbol than to test whether a set contains the symbol. As shown in the example

in Figure 18, in step 1, any instruction that is dealing with a single terminal

symbol (starred integers in Figure 11), is translated into a new instruction, whose

name has an S suffix. Figure 19 gives a sample of the transform pattern.

PU is a macro that pushes its argument onto the parser stack if there is

room. This is part of the mechanism used to simulate procedure calls. For

example, NC (the other procedure call instructions are NE and NES) is a call to a

non-terminal production of the grammar. First NC remembers the location to
-,-

which control should return (PU). A goto is executed and the return position is

marked with a case label. For efficiency, the case labels should be compact, thus

current is an integer from 1 to the number of calls in the parse tables. L is a label

attached to the code for the entry corresponaing to the jump target; IFIN and

IFNOT are macros that test if la is a member (not a member) of director set S.

A portion of Figure 7 has been transformed into directly executable

code in Figure 20.

•I

I
a . 4 .* . Ci" a
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Rule Code Lexical

LO: IF-NOT(D32,la) la=parErr(la,LO); goto L I;ary

LI: PU(1); goto L14;
push(1) 0 1

L14: IF-NOT(D1lja) goto L17;

L21: if (la !array) goto L15;
L22: la = nextermQ;

L23: if (la !=[)la=parErr(la,L23); la =nextermO;

int
L24: IF-NOT(D1,la) la=parErr(la,L24); PU(3); goto LU;

push(3) 0 1 3
L3: if (la != int) goto L6; a

IA: la = nextermQ;

L5: gotoLl13;
L13: goto pppop;

pppop: 01 3
case 3:
L25: if (la !])la=parErr(la,L25); la =nextermO;

of
L26: if (la !=of) la=parErr(la,L26); la = nextermQ;

L27: IF-NOT(D2,la) la=parErr(la,L27); PU(4); goto L14;
push(4) 0 1 4

L14: IFNOT(D1,la) goto L17;

LI 8: la = nexterrnQ);

L19: if (la != id) la=parErr(la,L 19); la =nexterm()id

EOF
L20: goto L28;
case 4:
L28: goto pppop;

pppop: 01 4
case 4:
1,28- goto pppop;

pppop: 0 1
case 1:
L2: goto pppop;

pppop: 0

Figure 17. DEER parser trace of array intl of ^id
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JQ 7*,6
step 1

Jos 7,6
step 2

if(la !=7) goto L6

Figure 18. Translation example

RD la = nextermQ;
AC A action(A);
NC L PU(current); goto L; case current:
NR goto pppop;
J-P L goto L;
JI SL IFIN(S, la) goto L;
JO SL IFNOT(S, la) goto L;
EQ S IF_NOT(S, la) la=parErr(la,current);
JIS S,L if (la=S) goto L;
JOS S,L if (la!=S) goto L;
NE S,L IF-NOT(S,la) la=parErr~la,L);

PU(current); goto L; case current:

Figure 19. SYNPUT codes to C code

Rule Op S L/A Directly Executable Code

LO JE D2 LI IF -NOT(D2,la) la=parErr(aLO); goto L I;
LI NC L14 PU(I; goto L14; casel1:
L2 NR goto pppop;
L3 JO int L6 if(Ia != inb) goto L6;
LA RD int la =nextermi()
L5 JP L13 goo Ll3;

L25 RE j if(Ia != ) la=parErr(la,L25); la = nextermo;
L26 RE of iffla !=of) la=parErr(la,L26); la = nextermQ;

Figure 20. Directly Executable Code '

The most straight-forward data structure used to represent director sets

is a two dimensional array, indexed by director set number and token code. For

our grammar, it might look like Figure 2 1.

J_2 W A % %V*~*% -~-
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token codes
set # 1 2 3 4 5 6 7 8 9 10
D1 0 0 0 0 0 0 1 1 1 0
D2 1 0 1 0 0 0 1 1 1 0

Figure 21. Naive director set encoding

Since most machines are byte or word addressable, we waste lots of space when

representing director sets. Packing the bits has the disadvantage of requiring a

much longer access time. A set membership test would require first a two

dimensional array access, and then a bit test, depending on the value of the

terminal symbol.

The key insight for better access efficiency is that for each rule the

director set S is a constant for a particular grammar and thus fixed at generation

time; only la varies with different input programs. Access will be faster if the

director sets are stored vertically, with each byte holding bits from 8 sets and

successive bits of a set occupying successive bytes. When there are more than 8

sets, another block of bytes will represent the next 8 sets. The length of the "

blocks matches the number of terminal symbols (ie. 11 for the sample grammar).

Figure 22 shows that DI contains a bit representing symbols 7, 8 and 9 which

correspond to the director set D = { int char num }.

" .I



25

sym D7 D6 D5 D4 D3 D2 DI DO0
1 1
2
3 1
4
5
6
7 11
8 11
9 11

10 _ _ _ _ _ _ _ _ _ _ _ _

Figure 22. Director set access and storage

The macros (Figure 23) generate an index into a one dimensional array, and

generate the right bit mask for the test.

#define WD 8
#define NS 11/* ten symbols plus the zeroth entry */
#define IFNOT(set,sym) if(! (Dir[sym+(set/WD)*NS]&(I <<(set%WD))))
#define IFjN(set,sym) if( (Dir[sym+(set/WD)*NS]&(1 <<(set%WD))))

char Dir[] = {
0x00, /* sym--0 sets 7-0 */
0x04, /* sym=1 sets 7-0 */
0x00, /* sym=2 sets 7-0 */
0x04, /* sym=3 sets 7-0 */
0x00, /* sym=4 sets 7-0 */
0x00, /* sym=5 sets 7-0 */
Ox00, /* sym=6 sets 7-0 */
0x06, /* sym=7 sets 7-0 */ .,"

0x06, /* sym=8 sets 7-0 */
0x06, /* sym=9 sets 7-0 */
Ox00); /* sym=10 sets 7-0*/

Figure 23. Director set storage
Its.'

,I
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CHAPTER 3

SYNTACTIC ERROR HANDLING

The quality of its syntactic error messages is an indication of the user

friendliness of a compiler. In the best case, the user is immediately led to all

syntactic errors of his program. In the worst case, if error recovery operates

incorrectly, the compiler may crash, leaving the user helpless. Section 3.1 gives a

brief overview of syntactic error recovery techniques. Section 3.2 presents the

theory behind the error recovery method selected. Implementation details are

presented in Section 3.3.

3.1. Overview

As a parser operates, it consumes input, token by token. The consumed

input, also called accepted input, drives the parser into a particular state.

Deterministic (non-backtracking) parsers never accept a token that cannot legally

continue what has already been accepted. This is one of the principle merits of

LL and LALR parsing techniques - they are guaranteed to detect errant tokens

as soon as they are encountered.

The user should receive as much information as possible from each

compilation attempt. It is unacceptable just to detect the first error and quit. The

parser should repair errors and continue parsing. Finally, it should deliver a valid

"I
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parse tree or connection sequence to the rest of the compiler. If the parser tries to

recover but delivers a faulty parse tree, the remaining phases of the compiler

could crash and leave the user helpless.

Gries [1976] gives an excellent annotated bibliography for error

handling. Also, Homing [1976] presents an overview of various techniques of

error handling. There are many strategies a parser can employ for error recovery:

panic mode, phrase level, error productions, global, and automatic.

One of the simplest language independent recovery techniques is the

panic mode. When an error is detected the input is skipped until one of a

predefined set of "special" symbols such as begin or ";" is encountered. The

parsing stack is popped until the special symbol can be accepted. Unfortunately,

this method has many shortcomings. It frequently results in deleting large

portions of the source text. In addition, semantic information depending on the

erased part of the stack becomes inconsistent. Finally, the set of special symbols
S.

must be determined by hand.

On detection of an error, phrase-level recovery makes a backward move

in the parse stack and a forward move in the remaining input. This isolates a

phrase which is likely to contain the error. Then a weighted minimum distance

correction is carried out at the phrase level.

Joy, Graham and Haley [Grahaml982b] use error productions for their

production Pascal compiler. First the compiler writer needs to predict the most

likely kinds of errors expected. Then error productions must be written by hand.

It is impossible to foresee all error conditions. In practice, the parser must be

exercised to see how well the error recovery works. Further tuning is likely to be

needed. There is another shortcoming of this method: the added error productions

could make the grammar ambiguous.
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Global error recovery attempts to find the smallest set of changes that

will make a given program syntactically correct. It is impractical from the

perspective of efficiency due to the exponential number of corrections that must

be considered. The smallest set of changes if there are more than two errors is to

enclose the error portion with comment brackets. This is usually not a desirable

recovery.

R~hrich [1980] has implemented automatic construction of error

handling parsers for LALR(l) grammars, and Fischer [1980] has done it for

LL(1) grammars. The technique is based on a sound theoretic foundation. The

resulting parsers are capable of correcting all syntax error by insertion and/or

deletion of tokens to the right of the error location. Therefore, no backtracking is

needed, and the output of the parser always corresponds to a syntactically valid

program. This contributes significantly to the reliability and robustness of a

compiler. The speed of parsing correct parts of a program is not affected by the

presence of the error handling capability.

R6hrich's technique of automatic error recovery was chosen for

incorporation in the directly executable parser because it automatically derives

the error recovery directly from the grammar. Many other techniques require the

manual specification of error recovery.

3.2. Automatic Error Recovery

A parser for language L will accept input strings (i.e. programs) in L.

Let T be the set of terminal symbols of the language L; then T* -L is the set of

all erroneous programs. Let otX be an erroneous program, where co is an initial

string that is syntactically correct and has been accepted by the parser and symbol

t cannot be accepted by the parser. The rest of the program is the string X. We

say that t is a parser-defined error. 'p

"w'C ,' ',' ;.,;. ,;.'G.;,-;.. ; '.,'-.'. ,',,'-2.';.'' , ', ' . , ; % ', ', ','.. ,.',. , -'.'-o.', ",, ,",,":.- " ,', ":. , ."- . - * .
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If cotXe(T*-L) is an erroneous program with parser-defined error t,

then to effect recovery the parser must alter either (o or t X such that c't XE L or

~t 'X'e L. Alteration of o is undesirable since it may involve undoing the effects

of previous actions. It is too expensive to retain information in case backtracking

is needed. Thus, we consider the alteration of only t and .

The basic idea is as follows. A fixed terminal symbol f (q) is

associated with each state q of the parser. When an error is detected, the parse

stack is copied. Then a "continuation parse" is carried out using the copied stack

and f (qi) as input at each state qi. In addition the set of allowable terminals

(Director set) of each state qi is added to the anchor set which is the set of all

terminals that could be accepted during this continuation parse. The function f is

chosen such that this process would terminate the parse rapidly, driving the parser

through states q I,..., qn. Next zero or more of the actual input symbols are

discarded until an input symbol t " is found which is in the anchor set. The state

for which t" is acceptable is qi. Then, the error is corrected by inserting

f (ql)...f(qi-1) into the input stream to the left of t" while adjusting the original

stack. Finally, normal parsing is resumed.

More formally, the steps are:
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Associating: Associate a terminal symbol f (q) with each parse state q at
generation time.

Detecting: Detect the unacceptable token t.
Anchors: Determine a continuation, V, such that o g eL. In other

words, find a string that legally completes the accepted input
co. Construct a set of anchors D = {d= T I v is a head of .
and 0o v d is a head of some string in L ).

Discarding Discard from the input the shortest string rje T* such that t X
1= r"g', t"ED.

Generating: Generate the shortest string c r T* such that (o a t" is a
head of some string in L. Note, a is one particular v of step
3.

Resuming Resume the normal parse with input t "p'.

The following two examples illustrate error recovery for the cases of

only token deletion and only token generation. The other possible case is token

deletion and generation.

Ui
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State: co array [ = [ X= int of char

The continuation is . = int ] of int.

The anchor set D is built by taking each possible head (v),
of V. and finding each symbol d that can follow it.

v=O D = { int char num).
v=int D =D U ,{}.
v=intl D =D of}.
v = int of D = D { int char num ^ array).

Find the shortest string r, scan X looking for the
first symbol that matches some t'reD. In this case:

t" int which gives
p.' = ] of char for which
Ti = " satisfies
t2 TIt"9

Let a be one particular v such that cow" is the head of some string in L.
In this example, there are no generated token because ( = 0.

Figure 24. Discarding tokens for: array [[int of char

.-.

co= array t =int X= lof char g.= [int of int. -'

v=O D={[.
v= [ D =D L {int charnum}.
v = [ int D =D )].

v=[int] D=D {of ).
v= [int]of D =D .j {int char num ^array).

t '=ofchar T1 = 0  0=]

Figure 25. Generating tokens for array int ] of char

,I,
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3.3. Implementation

This section first describes the straight-forward task of implementing

error recovery in a table driven parser. Next we address the problems

encountered in incorporating error recovery in a directly executable parser and

describe their solutions which form the contributions of this work. The Appendix

contains the source code for both types of parsers. Between the two parsers there

are many routines that are identical and a number that are similar. The C

preprocessor's conditional directives handle the few differences in the latter case.

The Makefile can be directed to produce either a table driven parser ("make itr")

or a directly executable parser ("make dep"). When a routine name is mentioned,

it can be found in a C file of the same name in the Appendix.

Chapter 2 explained the workings of the table driven parser on correct

input programs. This section explains parser behavior on incorrect programs.

Figure 26 is a block diagram showing the interactions of the various parts of the

table-driven parser during error recovery. The labels on the arcs are used in the

text to refer to the corresponding invocations during processing.

yyparse L---- lexAttr [,

parErr - 2 dvToAnchI

Figure 26. Error Recovery in a Table Driven Parser

During normal operation, the parser requests tokens from lexAttr. When an error

~ ~ ~ V..; 4* *~ ** ~ .,* i
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is detected, yyparse calls parErr (I) which conducts the entire error recovery. By

the time parErr returns, the error has been corrected and yyparse continues

normally with the next token.

In handling error correction, parErr calculates the anchor set (D) using

the technique described in the previous section and calls advToAnch and

advparse to delete and insert the appropriate strings. After computing D, parErr

calls advToAnch (2) which discards tokens from the input by calling lexAttr (3)

until an input token (t ") is found which is in D. Finally parErr calls advparse (4)

to continue the parse generating tokens until reaching a state in which t" can be

accepted. For this last step, advparse uses the actual parse stack and modifies the

parser state. When advparse reaches a state where t" is acceptable, error

recovery is complete, parErr returns and normal parsing continues. Both yyparse

and advparse are automata that share the same state, but differ only in their input

(actual input for yyparse, generated input for advparse). For either automaton,

parsing and semantic actions will be identical for identical input. The source

code with annotations is given in the Appendix.

Whereas the state in the table driven parser is entirely contained in the

stack, in a DEER parser the state is represented by both the program counter and

the stack. If error recovery can change the parse state, then this change needs to

be reflected ",.ck in the directly executable parser. This could be accomplished

by parErr "jumping" to the appropriate place in the parser which would be

difficult and machine dependent. Instead, the approach taken is to have error

recovery drive the directly executable parser by manipulating the tokens it

receives. Normally, the scanner gives tokens directly to the parser through calls -

to lexAtr. However, under error recovery, the parser may get generated tokens K'

(ie. from the string a if it is non-empty). Control over this is exercised by

.:
.* -. .. -.- K - -.. K *.K-.K'-K.-.-r 9-K .
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interposing a routine between the parser and lexAttr, which returns either input

tokens (from lexAttr) or generated tokens (from advparse) depending on the error

correcting state of the system.

There are only a few differences between the error recovery routines of

the DEER parser and the table driven parser.
nexterm( ) Obtains a token from lexAttr or advparse depending on the

parser state.
parErr(la,rule) has the additional task of building a call stack in a form that is

expected by error recovery. This requires a mapping between
compact case labels and rules (states).

advparse( ) The directly executable version performs no actions. Instead
the actions are performed in the actual parser as advparse
provides generated tokens.

Figure 27 shows the control flow of the DEER parser. A dashed arrow represents

a function call, and a solid arrow represents a token returned by a function. The

parser operates in either normal mode or error recovering mode. This state is

indicated by the global boolean variable JErrRecovering] (set by parErr, cleared

yyparse -I-_extem 2 advparse,, -

pa

parse lexAttr error

advToAnch '

parErr

Figure 27. Logical structure of the error recovering parser
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by advparse, and examined by nexterm). During normal parsing, yyparse

requests a token from nexterm (1). nexterm sees that [ErrRecovering] is false so

it returns the value obtained from lexAttr (2a,3a,4). The cost of testing

[ErrRecovering] which should be insignificant compared to the cost of obtaining a

token from the lexical analyzer, is the only extra cost when parsing a correct

program.

The following conditions are required for correct behavior. For every

call to parErr that occurs, there must be at least one call to advparse, the first call

is made by parErr itself, while possible additional calls will be made by nexterm

(when ErrRecovering = true).

The last call to advparse(from parErr or nextenn ) must never generate

a synthet," token but must return t". This is the exact condition under which

ErrRecovering gets reset to false. advparse will be called exactly length(a) + 1

times. Furthermore, if 7--0, then Tl* . (Note that the first and last call of

advparse could be the same call). There are two cases for the first call to

advparse from parErr. 1) The token t" matches what advparse was expecting so

ErrRecovering is reset to false and t" is returned. This happens when tokens are

only discarded from input. 2) t" does not match what advparse was expecting "o

a token must be generated.

The token returned by parErr must be one such that the condition

which caused the call to parErr is corrected - for example

if(la!=5) la=parErr(...) or

IFIN(2,1a) la=parErr(...)

parErr must return a token la such that the condition is false; that is, parErr

returns 5 or something in director set 2 respectively.
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Actions will occur at the correct place because only the parser can

invoke actions.

I,,
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CHAPTER 4

PERFORMANCE

The time and space requirements of a parser can vary widely.

Seemingly small details can make huge differences. In this chapter, I bring out

some of the performance issues and then compare DEER, SYNPUT and YACC

generated parsers recognizing PASCAL.

4.1. Performance Details

Conventional wisdom for software tuning is to build a system, measure

it, and then work on the areas which can yield the largest payoffs. I have used

this approach. The design and implementation of DEER has been heavily biased

toward fast parsing. Often, clever data structures reduce both time and space V

requirements; however, when there has been a conflict, I have chosen to trade off

some extra space for higher speed.

I will first discuss instruction space efficiency. Figure 28 gives the

static frequency distribution of code to parse PASCAL. There are total of 730

such instructions.

NP

.,...
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174 la nexterm(;
108 IFNOT( ) la=parErr();
92 if (!= )goto L;
88 if ( !=) la=parErr();
85 goto L;
82 PUO; goto L
36 goto pppop;

Figure 28. Frequency distribution of code

In terms of instruction space efficiency, the macro IFNOT occurs very

frequently and should therefore be as compact as possible. One of the original

implementations expanded this macro into about 5 machine instructions. The

current version, (Figure 22), expands the test into one instruction. This saves

about 1000 bytes for the pascal language (2 bytes per instruction * 5 instructions

per test * 108 tests).

The director set representation is crucial to data space efficiency. There

are roughly 64 director sets and 64 symbols for the PASCAL grammar. The

naive implementation would require about 4096 bytes. Bit packing reduces this

to 512 bytes.

Time efficiency is facilitated by the vertical director set storage

technique. The macro IF_NOT(la,2) checks membership of the lookahead in

director set 2. It is expanded as

if( ! (Dir[la + 2/8 * 11] & (1 << 2%8)))

The single 68020 instruction required to carry out this test is:

btst #2,a5@(0,d7:w)

The lookahead is in register d7, and the base of the director sets is in register a5.

The WIDTH of a byte is 8 and there are 11 terminal symbols (The extra is the

zeroth array entry). Various less optimal implementations require a runtime
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computation of the array index and the bit offset before the test can be made.

This triples the time required. On a 68020, byte tests are significantly cheaper 6

than long tests. Also, placing the array base in a register saves a load instruction

for every director set test. Taken together, these details represent more than an

order of magnitude speed improvement for director set testing.

The static frequency distribution of code gives us no clue as to how

often these statements are executed. It turns out that director set membership is

heavily used. For the input program described in the next section, the IFNOT

macro is used 37,267 times and the PU macro is used 19,590 times.

A naive representation of Op, Dset, and Datum would use integer arrays

requiring a total of 8760 bytes (730 rules * 3 arrays * 4 bytes per integer). There

are only 24 different kinds of Operations (Figure 12 gives a partial list);

therefore, a byte is sufficient to represent them. Symbols and director sets could

exceed 255 and rule numbers certainly do (730 rules for pascal) so a short integer

is used. More than 4000 bytes are saved by this representation (730 + 1460 +

1460).

There are a number of other examples where careful tuning can yield

substantial time and efficiency payoffs. These include choosing registers for

heavily used objects, such as the lookahead symbol. The stack pointer is also

places in a register.

4.2. Comparison
P

This section compares the time and space requirements of the parsers.

All measurements were carried out on a SUN 3/75 running SUN UNIX 3.2. The

parsers, which are written in C, were compiled with the optimize flag (-0). The

call graph execution profiler gprof [Graham1982a] and time provided the speed

6a~z
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measurements. The input used was the distributed SYNPUT pascal program.

The file which is 105,813 bytes long, consists of 16,170 tokens. The breakdown

of this input program is given in Figure 29.

5638 Name
1869
965
834
740 )(

400-523 Int• .

200-368 END BEGIN String THEN IF] =
70-182 + NIL DO <> ELSE VAR

40-61 - PROCEDURE WITH WHILE

Figure 29. Lexical classification of input

The size command provided the space information for text, (the executable code),

data, (the initialized data), and bss (the uninitialized data, zero fill on demand).

Both SYNPUT and DEER parsers have automatic error recovery; the

YACC parser has no error recovery. Figure 30 compares overall time and space

requirements of the parsers for the input. (The link editor rounds up sizes to the

next 2k byte boundary).

Parser Time Space
Parser Time text data bss total

DEER 2.0 40960 24576 6148 71684
SYNPUT 3.9 32768 24576 5968 63312
YACC 3.2 1 24576 24576 5884 55036

Figure 30. Time and space requirements

In Figure 31, the gprof tool extracts the parsing time from the overall time.

DEER 0.32
SYNPUT 2.20
YACC 1.24

Figure 31. Parsing time reported by gprof
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DEER parses about four times faster than YACC. This speed advantage plus

error recovey costs about 25% more space (7iK 55K).

1
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CHAPTER 5

CONCLUSIONS

I have built a generator that produces a very fast parser with error

recovery. Based only on the grammar, the parser is guaranteed to recover from

any syntactic input error and will output a correct structure tree. In terms of

efficiency, user friendliness and maintainability, the generated parser contributes

significantly to the quality of software containing it. These design goals have

been met with only a very modest space cost over parsers that have no error

recovery.

The DEER parser generator requires an LL(l) grammar. Many existing

grammars are LALR(1) and compiler writers have come to rely on the power of

the LALR technique. Often, simple mechanical transformations can yield an

LL(1) grammar from an LALR(1) grammar [Griffithsl976]; however, there are

clearly cases where this is neither possible nor desirable. There seem to be two

areas inviting further research - first, the need for a quality LALR(1) parser

generator. Second, there is a need for programs to assist in the grammar

transformation process.

I believe there is need for a new LALR(1) parser generator. It could be

based on an existing generator such as PGS or YACC. Corbett's [1985] Bison,

which is similar to YACC, holds promise as a starting base because of its

)~q~'Upp ~ U~* ~ "W~~ - %,%



efficiency and clarity. Furthermore, it is in the public domain. The major

question is whether it would be easier to add error recovery to YACC or Bison, or

make PGS faster. Pennello's [1986] work on making LALR parsing very fast

should be considered before such a project is undertaken.

Automating the grammar transformation process is desirable because

tedious, erro-," prone work is eliminated. A parser generated from the transformed

grammar mz y be able to run significantly faster than a parser generated from the

LALR(l) grammar.

There are several problems with transforming grammars. The most

important problem is that, LL(1) languages are a proper subset of LALR(1)

languages, thus there must exist LALR(l) grammars that cannot be transformed.

Furthermore, it is undecidable whether an arbitrary LALR(1) grammar has an

equivalent LL(1) grammar;, therefore, no program can tell us if the transformation

can be accomplished.

The transformed grammar may not be transparent to the compiler

writer. It would be much better to work only with the original grammar and insist

that the transforming tool preserve actions. This is easily accomplished by

planting connection points in the grammar before transforming.

Early work in the area was performed by Foster [Fosterl968] who built

a program call SID. Its main purpose was to assist language designers in

producing an equivalent grammar which could be parsed by a simple one-track

parsing algorithm. The parser also had reliable error detection capability whereas

hand written parsers had no assurances. SID first removes left recursion. Next a

series of substitutions and factorings is performed in hopes of producing an LL

grammar. If this step succeeds, a final pass is made for parsing efficiency.

NF
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Based on some of Foster's ideas, I implemented some code to perform

the same three transformations: left recursion removal, left factoring and comer I

substitution. The programs work on small simple test cases. Due to bugs in our

ML compiler, the programs cannot transform larger grammars such as PASCAL

and ADA. It will be interesting to learn whether complex grammars such as

ADA can successfully be transformed.

"M
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APPENDIX

This annotation pertains to the source code which follows. In this

description, program variables will appear in square brackets. The first step of the

formal description is to associate a terminal symbol with each parser state. This

is a shortest valid continuation of the string being parsed can be obtained by .

advancing the parser to an accepting state. The continuation is defined by the

sequence of terminal symbols specified by AR, RD, RE, and RA instructions

encountered during the advance. To advance the parser to the end of parsing,

increment the state at each AC, AR, EO, RD, RE, or RA instruction. The state

should be set to L at a JE, JO, or JP instruction. At NC or NE, the state is

incremented and the new value pushed onto the parse stack. At NR, the state is

set to the value of the top element of the parse stack and this element is popped

off. ?5

When an error is detected, parErr is called with two arguments: the

errant token t [la] and, the parsing rule where the error was detected [rule].

parErr controls the recovery by arranging for the Anchor, Discarding and

Generating steps of the formal description to be carried out. First a call is made

to getanch to compute the anchor set D. Next Tl is deleted from the input by

calling advToAnch with the argument t [la]. It returns the first acceptable token

t" which is saved in [AnchLa]. Finally, advparse is called to generate the string

of terminal symbols a. ,?.

getanch is the automaton that carries out step 3 of the recovery. It

initializes its state by making a private copy [dstack] of the global parse stack

[Stk]. getanch then simulates parsing by following the shortest continuation P',

5%
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and simultaneously building the anchor set D [Anchors]. There are two steps for

each state transition cycle. First, look at the current state q [rule], and if the I

automaton is in a state that requires looking at a director set, then add this set to

the anchor set. Second, perform a state transition. 4

advToAnch carries out step 4. It receives the errant token t [errLa] and

returns the first acceptable token t" [la]. As a side effect, zero or more calls have

been made to die lexical analyzer interface lexAtnr. Note, if zero calls were made

to lexAttr, then it must have been the case that t = t".

advparse carries out step 5. It is an automaton very similar to the

regular parser automaton (parselTR). It operates on the actual parse stack [Stk]

with the following two differences. At each state transition cycle, a check is

made to determine if the anchor token t" [AnchLa] can be accepted in the current

state. If so, the automaton is terminated and the token t" is returned. The second
I

difference is that when a token needs to be read, one is instead generated from the 7

continuation (gi), f (q).

When yyparse receives an unacceptable token, it calls parErr (a) to

initiate the error recovery automaton. parErr receives a copy of the errant token

t [lal and the place where the error occurred [rule]. parErr sets ErrRecovering to

true, constructs a stack for the automaton advparse to simulate the state of the

parser, computes the anchor set D [Anchors] by calling getanch, advances the

input to the first token of the anchor set, by calling advToAnch (b), saves this

token in t'" [AnchLaj and, finally, returns an acceptable token to yyparse by

calling advparse (e,f,g).

While in error recovery mode, yyparse calls nexterm (1), who calls

advparse (2b). Either a token is generated, or the global t" [AnchLa] is returned

(3b,4). The global variable [AnchLa] holds the first input token matching some

j- * -i,.-d -,,~jp ..- -. , . .. * -• • - , .i . . !, iI 1 "l • • ",. -I "' " .' "I *i' ''P "* % ,, -%' '%' **' " p.."
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member of the anchor set. This must be saved because error recovery may need

to generate synthetic tokens before t" [AnchLa] can be accepted.

advToAnch, must possibly discard the string of tokens rl from the input

string by calling lexAttr (c,d). The automaton advparse must generate the

shortest string a up to the anchor t" [AnchLa]. If a is empty no tokens will be

generated.

parErr should return t [la] if only discarding has occurred otherwise

parErr should return the head of c as obtained from advparse(.

'oI
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finclude "errh"extern POSITION curpos;, advparsexc

sotse ietrse rmwic ocos

** On exit-
* ~ returns terminal codefothcosneria

register DECTYPE *dirSet = virtDir;
short sym;

for(sym=1; syrn<=NSYMS;, sym+s-s)
IFIN(set~sym)

break-,
lf(sym > NSYMS)

PANIC("cboose: terminal not found");
DB(CHOOSECchoosc: returns token %s(%vd) from set qod't'tokCod(sm). symnset));
rcturn(sym);

void tokgen() ( DB(TOKGEN.('takgen\n"));I
char *malocQ);

short
advparse()

SAdvanwzc the parser to accgpi the anchor
*~On entry-

** Sikfl..Sp)=parser stack
*' SskSp) indexe the rule detecting the error

SOn exit-
S Stk[I..Sp)=repaired parser stack
' SikSpi indexes the rule to be interpreted

SDEl':
** On entry-

*S AndzLa contains first token matching an anchor. Adivparse found

On exi- by disarding input up to anchor token.

if AnchLa is member of director set- ErrRecovering=O
return(AnchLoa)

else loop until we tokgen (nT==1), then return it (genla).

*register DECTYPE *dirSet = vistDir;
static char ernsg[] = "Generating token \"%s\";
char '*p;

short Senla; /* look ahead generated *1
short Tuleji;
short nT=0 I' no newToken generated yet, used only by DEP I

DB(ADVPAR.("AdvPar: rule Opfrule] Dset[] Darurnfl Stk befor swiwch\n"));

d{ rule = StkSp);

DB(ADVPAR,Q'"ccN9~s\T6od'%d",
4 rule, instuCod(Oplrule]), Dset[rule].Datum[rule]));

DB(ADVPAR,(" qod-%Sikji]));
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DB(ADVPAR.&Nn"));

#include "opcae.i" 1. shorthand for case labels below *, .advparse
switch( Op[rule]) /* CHECK SYMBOL*/

I
AR JE JI1JO RD RE RA

IFIN(Dset[rule].AnchLa) goto stopFound;
break;

ARS JES JIS JOS RDS RES RAS
lf(Det[rule]=AnchLa) goto stopFound;
break;

AC EQ JP NC NE NR NES NRS EQS
break;

default
PANIC('advparse: default case");

#lfdef DEP /* all actions are done cc--routine in directezec parser
#derine ACTION
#else
#deflne ACTION action(Datum[rule])
#endir
#define IMP Stk[Sp]=Daturn[rule]

Stk[Sp].; 1* nez rule *
switch( Qpfrulej)

AC ACTION; break;
RID RE gerla=choose(setfrue);tkgno;nT=l; break;
AR RA genla=choose(Dset[nule]);tokgeno;nT=l; ACTION; break;
RDS RES genla = Dsetqrule); tokgen0;riT=I; break;
ARS RAS genla = Dset[rule]; tokgeno;nT=l; ACTION; break;
NES NC NE PUSH; break;
NRS NR POP; break;
JOS lBS JP JO XE IMP; break;
JIS EQS I EO f~cont* /break;
default:

PANIC("advpamse: default of parsop[rulel");

#Ifdet DEP
)whfle(Sp!=-O && nT--O);
If(Sp=O0) prinIC(WARNING!! advparse: exit from while loop Sp==ft');
DB(ADVPAR.("ADVPAR, genLa--%s(%d)\t",tokCod(genla).genla));
If( (ptnaloc(sizeof(emsg)+lO)) = NULL) /* for token expansion f!

printf(bparErr: malloc failedvf);

sprintf(p, emsg. tokCod(genla));
message(WARNIhJG~pO.&curpos);N

return(gerla);
#else

JwbIle(Sp!=O);

*endlf printfCWVARNLNG!! advparse: Exit from while loopSP--ft");

siopFound.A
Erritecovening = 0; /0 can continue normal parse now/
DB(ADVPAR.C"ADVPAR End Recovery,retrns genLai=qs(%d)\z",tokCod(AnchUa).AnchUa));
return(AnchLa); N
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#include "macros.h"

void
Sgetanho getanch.c
/* Compute the anchor set
** On entry-
*5 Stk[I..Sp]=parser stack

* Stk[Sp] indexes the rule detecting the error
** On exit-
1 ** Anchors=anchor set
*1

{
register DECTYPE *dirSet = virtDir;
short dstlktop; /* dummy parse stack /
short dstack[MAXSTK];
short rule,i;

for(i=l; i<=NSYMS; i++) Anchors[i] = 0; /* zero Anchors /

dstktop = 0; I* copy valid portion of Stk */
DB(GETANCH,("getanch:stack= "));
while( dstktop<Sp ) {

dstktop++;
dstack[dstktop]=Stk[dstktop];
DB(GETANCH,("%d ".Stk[dstktop]));

DB(GETANCH,('n"));

do (
rule = dstack[dstktop]++; I* assume get ready for next instr */

#include "opcase.i"
swltch(Op[rule]) /* SEARCH - build Anchor Set for this production * /

1* does JI belong here??? *I
AR JE JI JO RD RE RA

for(i=l; i<=NSYMS; i++) /* add elements of Dir set to Anchors / ,
IFhIN(Dset[nrle], i)

Anchors[i) = 1;
break;

ARS JES JIS JOS RDS RES RAS
Anchors[Dsetqrule]] = 1; /" add this symbol to Anchors
break;

AC EO JP NC NE NR NES NRS EOS
break;

default:
PANIC("getanch: default");

switcb(Op[rule]) P MOVE - shortest continuation /

JOS JES JP JO JE
dstack[dstktop] = Datumfrule]; /* Jump /
break;

NES NC NE
dstktop+-+; dstack[dstktop] = Datum[rule]; I* Call
break;

NRS NR
dstktop-; /* Return */
break;

ARS EOS JIS RDS RES RAS RD RE AC AR RA J] EO

,, . ',4,, .k ., ,y ... .V ,,r, W"t I.,, '.,,- r,,g'''g.,.. '"gc'',.';¢ " ".C'e,'.r.r2',£
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break; /* does JI belong here???* I ... getanch 4

default:
PANIC("getanch: default case");

)whle(dstktop!=O):
#lfdef DEBUG
DB(GETANCH.C(anchor set")

for(i=l; i<=NSYMS; i++)lf(Anchomji]) DB(GETANCH.("%s(%d) ",IokCod(i).i));
DB(GETANCH.Clo"));
#endif

advToAnch-c

4include "enrh"
extern POSMTON cuwpos;
#inchzde "macrus~i"
short
advToAznch(err~a)
short errLa; %-

*Advance Mhe input teW to an anchor%
** On er) %

** errLa~ftrst unaccepted token
** Anchors=sel of possible anchors

*~On exit-
** raurn first member of Anchors encountered

short la = errI~a; 'ti

whlle(!Anchorstll)de

message(WARNING, "Discarding token".O,&cinpos);
DB(ADVANCH. ("ADVANCH: discarding token %s(%d)\si",tokCodala).l&));
I& lexAttno; f

return(la); %I
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#include "err.h" parErr.c
extern POSITION curpos;
#include "macros.h"
char *malloc();
/*
** returns the token that was expected when error occurred

* entry- La is errant token
** exit- AnchLa has first usable token of input, ie: in the anchor set
** return a token that the parser would have accepted if parser

** saw that token instead of La.
,i

short
parEjr(lande)
short rule,la;
I
static char errmsgl- = "Parse error in rule %d";
char *p;
int i,cas;
static short *caseMap;
#Ifdef DEP
short *s;

ErrRecovering = 1; I* nexterm examines, advparse clears it * I
/*

** Provide a compatible stack for the error recovery automaton.

* Need to translate between compact case labels, into
** sparse states. This implies a mapping table. We built it
" once per run if error recovery is needed.
*1

#deflne NC 7
#define NE 8
#define NES 20

If( (caseMap=(short *)malloc(300)) = NULL)
prinf("p&Err: malloc failedf");

cas=o;
for(i--O; i< 728; i++)

if(Op[i]-NE II Op[i]-NES II Op[i]--NC)
caseMap[cas++] = i;

s = DEPStack; I* provide a stack for automaton * I
. Sp= 0,

whlie( s<DEPSp )
I
printf(" %d ", caseMap[*s]);

*i Stk[Sp++] = caseMap[*s++];)

- #endlf
If( (l-malloc(szeof(errmsg)+8)) = NULL) 1* 8 for decimal expansion */
ee printf("parErr malloc failedf");
else

sprinf(p. ernnsg, rule-1);
message(ERROR.p,0,&curpos);
1* message(ERROR, &curpos, "Syntax error"),*I

DB(PARERR,("Porse error in rule %d la=%dn", rule-1.la) ):
Sik[Sp] = rule; /" overwrite top with current rule * 1
getanchO;
AnchLa = advToAnch(a); /* save the first useful token after discarding* /
return(advparseO);
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#deline SYNPUTEOF 0

void ri parseDEP.c
poflo(r)
short r,

printf("*Stack overflow pushing %ft".' r
exit(3);

short DEPSmar[MAXSTKJ, *DEPSp;

short
nexterm()

return( ErrRecovering?advparseo:lexAtu() )

void
yyparseo

register DECTPE *dirSct = viri i
register short *p;
register short la;

#ifdef DEBUG
#define PU(x) (If' (DEPSp = &DEPStackIMAXSTK]) poflo(x);,\

*DEPSp+. = x,
DB(PARDEP.("PARDEP: push(%d) ".x));,\
DBFOR(p=DEPSack.p<DEPSp,p+-)N

DB(PARDEP.("%d ",*p)),\

DBI RE."q"),

#else
#define PU(x) *DEPSp++ = x
*endif

ifSERIALnurn != scrialNum)
printf("mismatch between Direc.h and Dirvc.cri");

DEPSP = DEPStack; *DEPSp+t+ = 0; Ia =nextermo;
goto LO;

pppop:
MIdef DEBUG

DB(PARDEP.("PARDEP: pppop: ")
DBFOR(p=DEPStack~p<DEPSp,p-i*)

DB(PARDEP.("%d *,*p));

#endlt DB(PARDEP,("case: %dfn",*(DEPSp)));

switch (*(-DEPSp))(
case 0: printf(Cvncase O:\Nz");break; -

#include "tbl.i P
default: pnintf("dcfault case, W'i);

If~la != SYNPUTrEOF)
printf("extra stuff Nin");

DB(PARDEP,("PARDEP: PARSE SUCCESSFUL\zi"));

%,
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#derine SYNPUTrEOF 0
#derine IMP StkfSp]=Datumfrule] parselTR.c
#include "macroshV
void
yypaseC)

register DECTYPE *dirSet virtDir;
register short larule~i;

If(SERIALjinm serialNum)
printf("mismatch between Direcbh and Direc-Oni");

la = lexAttuo; l* ini LookAhead *1/
DB(PARTrM(Cnule Op[rulel Dset[] DarumlJ Sik befar switchlci"));
Sp =1; Stk[Sp] 0;
do{

'4 rule =StkE SpJ +-t; I* get current rule and prepare for ncta
D]3(PARR.(%z%s\ZT~d'd.

rule, instrCod(Opfrul. Dsettrule].Dazwn[rulej));

#include "opcase.i" I* shorthand for case statement*
switch (Qpfrule)) I

*ARS AR action(Dannnl[rule]);
/* Fall thru*/

RDS RD la=iexAtro;
break;

RE IF-NOT(Dset.[rule],la)
la = parErr(hj~ule);

else la=lexAttro;
break;

AC action(DatutnjruleD);
* break;

RA IF NOT(Dstfrule)a) ]a = parWr~arue);
else ( artion(Daturn[ruleJ); la=lex.AttQ; )

break;
NC PUSH 

bek
NE IF NOT(Dsetrule].la) la = paxErraarule);

e6. RUSH
break;

NR it (Dsetfrule] != 0)
IfNOT(DseqTunle].la) la =par~rrlarule),

else POP;
else POP;

break;
I? IMP;

break;
J7 IF-IN(Dsetfrulel~ja) JMP;

break;
10 IF NOT(Dset[ru~e].la) IMP;

lB IF NOT(DsetruleJ.la) la = parErroarnile); bek

else IMP;
break;

EQ IF-NOT(Dset[rulej.1a) la = parErrIarule); break;

RES It(DWe[rulej!=Ia) la =parErr(Iarule);
else la=lexAttro;

break;
RAS lf(Dsetjrulcj!=Ia) Ia = paxErr(la.rule);.

else Iaction(Dammrf rulc]); Ia=IcxAttrQ;
break;

NES if(Dset~rule]'=Ia) la =parEr-(Iaxrule);
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else PUSH
break-,

NRS If (Dsetrule] 1=0)
lf(DsqTlre]'=la) la parExrrarule);

S else POP;

break;
JIS if(Dset[nle]=la) IMP;

break; M
Jos lT(Dset[ruleJ !=la) WM;

break-,
JES If(Dset[rUle]!=Ia) la = parErx(Iajrule);

else JMP;

EQS lT(Dset[rule]!=la) la = parErr(Iajrule); bek
break;

default: PANICC'default of parser");

while (Sp > 0);
lf(Li ! SYNPUTEOF)

prirntf(extra stuff after complete progrmVn");
DB(PARITR,("PARITR: PARSE SUCCESSFULqi"));

Ol
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macros.h "

*Include <stdio.h>
Metlne LEX OX0001
#define ACT' 0x0002 -

#deflne ADVANCH 0x0004
#define CHOOSE 0x0008
*define TOKGEN OxO0 10
#dtefine ADVPAR MOM02
#define GETANCH 0x0040
#define PARERR 0x0080
#deflne PARDEP OX01OO
#define PARJTR 0x0200

f1fdef DEBUG
#define DB(whatirest) if'(Debug&what) printf Test
#define DBFOR(a0b,c) for(ab;c)

#elseN
*define DB(what.Test)
*define DB3FOR(ab,c) w
#endif

#deflne PANIC(c) {printf("PANIC: %s, aborting'.i, c); Mfush(stdout);aborto;)
#detine MAXSTK 128

1* DBFOR(p=DEPStackj,<DEPSpp++) *1
#define PUSH (if(Sp>=MAXSTK) PANIC("Parse stk ovrf1o\fl");,\

Spi-s; Stk[Sp] = Datum[rule];\
DB(PARITR,("PARITR: push(%d) ",Stk[Sp]));\
DB(PARrTR,('Yif));\

#define POP Sp--

efineDB(PARITR,('PARfTR: pop(%d)\n",Stk[SpJ));\

#tinclude "Direc.h" /* parameters o~f director set- NUMSYMS and WIDTH /
/* Check membership in director set by set nwmber and symbol * /
#define IFNOT(smtsym) lf(!(dirSeqsymni(set /WIDTH)*NSYMS]&(1«(set%WIDTH))))
#define IFIN(set~sym) 9f( (dirSet[sym+(set/WIDTH)*NSYMS]&(I<(set%WIDTH))))

i* EXTERNAL DECLARATIONS*/
void getancho. actiono, yyparseo, tokgeno;
short parErrO() nextermo, lexAttro, advToAnchQ. advparseo, chooses;
char *insrrCodo, *tokCodo;

extern short Anchors[];
extern short Op[), Dset[J, Datumn[];

extern short Sp. AnchLA. ErrRecovering;
extern short Stk(1;
extern short DEPStackjj. *DEPSp;
extern short Debug. serialNum;
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# ITR is interpretive parser, DEP is diectly executing parser Makeile
GRAM= pascal.g
CrL=_ pascal.ccl
CF =-O -DDEBUG
CFLAGS= -I. -IS(INCL) S(CF)
LIEBS= SSCST /lib /fraine.a
INCL_ SSCST /include
XSRC= SSCST/tub /lex.c S$CST/fib Iidn.c $SCST Isrc fb /lnt.c SSCST /src/fib Ist.c\

S$CST /src/fib /fpt.c $SCST /src/tub/~src-c SSCST Isrc /lib /err.c $SCST /lib Icsm.c

HDRS= Direc~h rnacros.h
GENSRC= lexAttr.c advparse.c advToAnch~c parseDEP.c instrCod.c\

getanch.c mamnc parErr.c tokCod.c action.c\
dataxc parErrxc advparse.c Direc.c

DIRSRC= parseDEP.c
TrMSRC= paselr.c

GENOBJ= lex.o idn.a csm.o lexAttr.o advToAaicl~o instrCod.o \
getanch.o mair~o tokCod.o action.o Direc.o data.o\
Qp.o Dse~o Daitum.a

DIROBJ= parErrDEP.o advparseDEP.o parseDEP.o
ITROBJ= parErrlTR.o advparselTR.o parselTR.o
SCRIPTS= OpDsetDatum.awk action.awk dir.awk tl.awk t3.awk tokilex.awkV

dep: Diiec~h S(GENOBJ) S(DIROBJ)
cc S(CF'LAGS) -DDEP $(DIROBJ) $(GENOBJ) S(LIBS)
my a.out dep

itr. S(GENOBJ) S(ITROBJ) macros.h
cc S(CFLAGS) S(1TROBJ) S(GENOBJ) S(LIB3S)
my &.out Ar

yac: ylex.o driver.o y.tab.o yylex.o idn.o csm.o
cc S(CFLAGS) ylex.o driverno y.tab.o yylex.o idn.o csm.o S(LlBS) -oyac

symbols: pascal.par
sed -f SSHOME/in/yaccsed pascal.par I sort I uniq > symbolsk

pa'ser.y: newcodes pascal.par
S$HOME /bin/mkyacc.sh newcodes pascal.par

y.tab.c y.tab.lt: - parser.y er

print:
print Makefile S(HDRS) S(GENSRC) S(DIRSRC) S(ITRSRC) $(SCRIPTS)

lexOut: tables
cvtdir <tables

CTL~x S(CTL) lexOut %I
(cat S(CTL); sort lexOut) >CTL.x

term.h: CTL.x
-in S$HOME/bin/VSFILE.
-In $SHQME/bin/ZERDAT.
bgla CTL.x%

mVSFILE ZERDAT0,"

iokCodo: tokCod.c tokCod.i l
cc -c tokCod.c

lexMap.i: newcodes
sort +2 -n newcodest awk -f tokicex.awk

tokCod.i: newcodcs

;4v'I
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sort +1 -n newcodesi awk -f tok.lex.awk

action.o: action~c actioni
cc -c action.c
cc -c S(CFLAGS) S<

idnrbl.h csmtblh: newcodes
adtinit -f -c newcodes;

lex-o: term.h lex.Map.i
cc -C S(CFLAGS) lex.c

main.o: tbl.i
parseDEP.o: tbl.i

lintDEP:
lint -1. -IS(INCL) -DDEP $(XSRC) S(GENSRC) S(DIRSRC)

lintlTR:
lint -A. -IS(INCL) S(XSRC) S(GENSRC) $(ITRSRC)

parErrDEP.o: parErr.c
cc -c $(CFLAGS) -DDEP parErr.c
myv parErr.o parErrDEP.o

parEnlTrR.o: parErr.c
cc -c S(CFLAGS) parErr.c
my parErr.o parErrrTR.o

advparseDEP.o: advparse.c
cc -c S(CFLAGS) -DDEP advparse.c
mv advparse.o advparseDEP.o ~

advrparselTR.o: advparse.c
cc -c S(CFLAGS) advparse.c
niv advparse.o advparselTR.o

csm.o: csmtbh
cc S(CFLAGS) -DINIT -c SSCST/lib/csm.c

idn.o: idntblh
cc $(CFLAGS) -DNI1T -c S$CST/hib/idn.c

tables: S(GRAM)
synput S(GRAM) > $(GRAM).out

tbl.i: tl.awk t3.awk tables
# ~expand RD 5* to RDS 5

awk -f tl.awk tables >xtbl
awk -f t3.awk xtbl >tbl.i; Za,.

# ~to get Op.c Dset.c Datumn.c
awk -f OpDsetDatum.awk xtbl
mf -f xtbl

Direc.h. tables
cvtdiir <tables

Direc.c: tables
cvtdir <tables

cleanall: clean
rm -f cvtdir tables newcodes tokCod.i lexMap.i parser synpULh

clean:
rmn -f tbl.i dep itT S(GENOBJ) S(1'iROBJ) S(DIROBJ)\


